DIPHOSPHOR, PHOSPHOR-, ARSEN- UND ANTIMONATOME ALS CLUSTERBAUGRUPPEN

HEINRICH LANG, GOTTFRIED HUTTNER*, LASZLO ZSOLNAI, GERHARD MOHR, BEATE SIGWARTH, UTE WEBER, OLLI ORAMA und IBRAHIM JIBRIL

Lehrstuhl für Synthetische Anorganische Chemie, Fakultät für Chemie, Universität Konstanz, Postfach 5560, D-7750 Konstanz (B.R.D.)

(Eingegangen den 21. Oktober 1985)

Summary

Reactions of $Fe_2(CO)_9$ with $L_nM-PHal_3$ ($L_nM = 16$ -electron fragment: $Cp(CO)_2Mn$, $(CO)_5Cr$, $(CO)_5Mo$, $(CO)_5W$) yield clusters of the type $Fe_3(CO)_9(\mu_4 - P)_2(ML_n)_2$ (II). Compounds II contain the trigonal bipyramidal cluster framework $Fe_3(CO)_9(\mu_3 - P)_2$, the basis of which is a closed triangle formed by three $Fe(CO)_3$ units; the apical positions of the trigonal bipyramid are occupied by phosphorus atoms. Each of the capping phosphorus atoms binds an additional ML_n fragment. Compounds of type II are also obtained from $Fe_2(CO)_6(\mu_3 - P)_2(ML_n)_2$ (I) by formal addition of an $Fe(CO)_3$ group. A further general synthetic approach to clusters $Fe_3(CO)_9(\mu_4-X)_2(ML_n)_2$ (X = P, As, Sb) is the reaction of halo-phosphinidene, arsinidene or stibinidene complexes, $(L_nM)_2X$ -Hal (X = P, As, Sb) with Na₂Fe(CO)₄.

Similar procedures are used for the construction of compounds III and IV. Complexes III contain phosphorus as a μ_4 -spiro centre; compounds IV contain metallacyclic phosphanes (CO)₄Fe-P(R)-Fe(CO)₄ as ligands.

From $(CO)_5 CrPBr_3$ and $Fe_2(CO)_9$ the cluster $Fe_2(CO)_7(P \equiv P)[Cr(CO)_5]_2$ (V) is obtained in which a diphosphorus unit is side-on and end-on coordinated as an eight-electron ligand.

The identity of the new compounds is documented by analytic and spectroscopic data as well as by X-ray-structure analyses of seven compounds.

Zusammenfassung

Durch Umsetzung von $Fe_2(CO)_9$ mit L_nM -PHal₃ ($L_nM = 16$ -Elektronenfragment wie $Cp(CO)_2Mn$, $(CO)_5Cr$, $(CO)_5Mo$, $(CO)_5W$) gelingt der Aufbau von Clustern der Art $Fe_3(CO)_9(\mu_4-P)_2(L_nM)_2$ (II). Die Verbindungen II enthalten ein trigonalbipyramidales Clustergerüst $Fe_3(CO)_9(\mu_3-P)_2$, dessen Basis von einem geschlossenen Dreieck von drei (CO)₃Fe-Gruppen gebildet wird; die apicalen Positionen der trigonalen Bipyramide sind von Phosphoratomen besetzt. Die Brückenphosphorgruppen binden zusätzlich jeweils ein ML_n -Fragment. Die Darstellung von Komplexen des Typs II gelingt auch ausgehend von Komplexen I, $Fe_2(CO)_6(\mu_3-P)_2(L_nM)_2$, durch formale Addition einer $(CO)_3$ Fe-Gruppe. Ein allgemeines Syntheseschema ist weiter die Umsetzung von Halogen-Phosphiniden-, Arsiniden-, oder Stibiniden-Komplexen $(L_nM)_2X$ -Hal (X = P, As, Sb) mit Na₂Fe(CO)₄.

Mit ähnlichen Methoden gelingt weiter der Aufbau von Komplexen III, welche Phosphor als μ_4 -Spirozentrum enthalten und IV, in denen metallacyclische Phosphane (CO)₄Fe-P(R)-Fe(CO)₄ als Liganden wirken.

Aus $(CO)_5CrPBr_3$ und $Fe_2(CO)_9$ erhält man die Verbindung V, $Fe_2(CO)_7(P=P)-[Cr(CO)_5]_2$, die eine side-on und end-on koordinierte Diphosphoreinheit als 8-Elektronen-Ligand enthält.

Die Identität der neuen Verbindungen wird ausser durch analytische und spektroskopische Daten durch Röntgenstrukturanalysen von sieben Beispielen belegt.

Einleitung

Vor kurzem hatten wir gezeigt, dass die Frage, ob zwei Phosphoratome in einem Cluster als brückengebundene Diphosphoreinheit auftreten, oder ob sie als isolierte μ_3 -Brücken wirken, durch einen Unterschied von zwei Elektronen im Elektronenhaushalt in einem Cluster entschieden wird [1]: Während im Co₂(CO)₆-Derivat A die Diphosphoreinheit insgesamt als 8-Elektronen-Donorligand wirkt, bilden im Dieisenhexacarbonyl-Derivat **B** die beiden Phosphoratome trigonal-planar koordinierte μ_3 -Brückenzentren, in denen sie mit jeweils allen fünf Valenzelektronen in die Komplexbindung eingreifen.

Derivat 🗛

Derivat **B**

ML_n = 16-Elektronenfragment, z.B. (CO)₅Cr, Cp(CO)₂Mn

Wir berichten hier über Reaktionen von $Fe_2(CO)_9$ mit Halogenphosphorverbindungen und deren Komplexen. Bei diesen Umsetzungen wird die Bildung von Diphosphorliganden ebenso wie die Bildung von μ_3 - oder μ_4 -Phosphorzentren beobachtet. Die μ_3 -Phosphorbrücken weisen dabei je nach dem Elektronenbedarf des Clusters trigonal-planare oder häufiger trigonal-pyramidale Koordination auf. Die μ_4 -Phosphorbrücken können als Spirozentren in vierkernigen Komplexen auftreten oder aus pyramidalen μ_3 -Phosphorbrücken durch Koordination des freien Elektronenpaares abgeleitet sein.

Umwandlung von trigonal-planar-koordiniertem μ_3 -Phosphor in μ_4 -Phosphor

Die Verbindung I (Typ **B**) sollte mit ihrem ungesättigten Phosphor-Metall- π -System dazu in der Lage sein weitere metallorganische Fragmente als Liganden zu komplexieren.

Eine Reaktion dieses Typs beobachtet man bei der Umsetzung von I mit $Fe_2(CO)_9$.

Das Reaktionsprodukt IIa enthält eine $(CO)_3$ Fe-Gruppe mehr als das Edukt I. Der Einbau des zu R-B isolobalen $(CO)_3$ Fe-Fragments in den Cluster I lässt die geschlossene trigonal-bipyramidale Struktur in IIa im Sinne der üblichen Elektronenzählregeln verstehen. Das Grundgerüst Fe₃ $(CO)_9X_2$ des Clusters IIa wurde für X = As von Markó et al. [2] als Produkt der Umsetzung von AsHal₃ (Hal = Cl, Br) und Fe $(CO)_5$ beschrieben. Für X = P ist das System jedoch nicht erhalten worden. Die Versuche es analog zu Fe₃ $(CO)_9As_9$ herzustellen führten stets zu anderen Verbindungen [3].

Die Verbindung IIa entsteht auch bei der Umsetzung von $Fe_2(CO)_9$ mit $Cp(CO)_2MnPCl_3$. Die Reaktivität der Phosphor-Halogen-Bindungen ist für die Selektivität dieser Reaktionen entscheidend. Während aus $Fe_2(CO)_9$ und $Cp(CO)_2MnPBr_3$ als Hauptprodukt der Komplex I entsteht [1], der erst mit überschüssigem $Fe_2(CO)_9$ in IIa umgewandelt wird, kann mit $Cp(CO)_2MnPCl_3$ als Edukt die Bildung von I nicht beobachtet werden; man erhält hier IIa als Hauptprodukt. Daneben entsteht IIc und als weiteres Nebenprodukt IIh.

Verbindung	L _n M	L _n M'
 IIa	Cp(CO) ₂ Mn	Cp(CO) ₂ Mn
Пр	$(CH_3C_5H_4)(CO)_2Mn$	$(CH_3C_5H_4)(CO)_2Mn$
IIc	Cp(CO) ₂ Mn	(CO) ₄ Fe

Synthese und Reaktionen von Clustern mit dem Fe₃(CO)₉P₂-Gerüst

Ähnlich wie $Cp(CO)_2MnPCl_3$ reagieren mit $Fe_2(CO)_9$ die Verbindungen $(CO)_5MPHal_3$ (M = Cr, Mo, W; Hal = Cl, Br). Aus den Umsetzungen im System $Fe_2(CO)_9/(CO)_5MoPCl_3$ konnte bisher nur die Verbindung IId als Reaktionsprodukt rein erhalten werden.

Mit $(CO)_5$ WPHal₃ (Hal = Cl, Br) entsteht als Hauptprodukt die Verbindung IIe: Nebenprodukte sind die spirocyclischen Komplexe III und Komplexe metallacyclischer Phosphane IV (s.u.).

Die Phosphor-Wolfram-Bindung wird beim Aufbau des Clusters IIe nicht gebrochen, es werden weder $(CO)_5$ W-freie Produkte, noch solche erhalten, in welchen die $(CO)_5$ W-Einheiten durch die isoelektronischen $(CO)_4$ Fe-Gruppen ausgetauscht wären (vgl. IIc, d, f). Diese Beobachtung spiegelt die Tatsache wieder, dass die Festigkeit der Phosphor-Wolfram-Bindung grösser ist als die der Bindung zwischen Phosphor und den Metallen der 4*d*- oder 3*d*-Reihe [4].

Dementsprechend reagiert $(CO)_5Cr-PHal_3$ (Hal = Cl, Br) mit Fe₂(CO)₉ unter partiellem Austausch der phosphorständigen $(CO)_5Cr$ -Gruppe durch Fe(CO)₄ zu IIf.

Die zu IIa, b bzw. IIe analoge Verbindung $[(CO)_5Cr]_2(\mu_4-P)_2Fe_3(CO)_9$, in der beide Phosphoratome des Clusters $Fe_3(CO)_9P_2$ durch jeweils identische ML_n -

Einheiten gebunden sind, kann im Reaktionsgemisch spektroskopisch nachgewiesen werden. Ihre Abtrennung und Reindarstellung gelang jedoch nicht.

IIf entsteht auch, wenngleich in weniger guten Ausbeuten, bei der Umsetzung von $(CO)_5Cr-PCl_3$ mit Na₂Fe $(CO)_4$. Ebenso bildet es sich aus dem Chlorphosphinidenkomplex $[(CO)_5Cr]_2P-Cl$ mit Na₂Fe $(CO)_4$.

Dass bei den hier beschriebenen Reaktionen die Verbindungen $Fe_3(CO)_9P_2(ML_n, M'L_n)$ (IIc, d, f) an Stelle der zunächst erwarteten Komplexe $Fe_3(CO)_9P_2(ML_n)_2$ auftreten, lässt darauf schliessen, dass die an die μ_3 -Phosphorbrücke des Clusters $Fe_3(CO)_9P_2$ gebundenen 16-Elektronenkomplexfragmente in der Regel so locker gebunden sind, dass sie durch im Überschuss vorhandenes "Fe(CO)₄" ausgetauscht werden können. Bei dieser Hypothese zum Reaktionsablauf sollte man dann erwarten, dass die endständig gebundenen 16-Elektronenfragmente durch Lewis-Basen L aus den Komplexen vom Typ II, unter Bildung des Stammkomplexes $Fe_3(CO)_9P_2$, freigesetzt werden könnten.

Setzt man dementsprechend IIa mit PPh₃ um, so beobachtet man jedoch keine Reaktion. Beim Bestrahlen solcher Reaktionslösungen tritt dagegen Reaktion ein, wobei aber auch nach längeren Bestrahlungszeiten die Umsätze so gering sind, dass eine präparative Isolierung der Produkte sehr unbequem ist. Bessere Ergebnisse erhält man mit dem basischeren $P(O^iC_3H_7)_3$ als Reaktionskomponente. Bei der Bestrahlung von IIa mit $P(O^iC_3H_7)_3$ erhält man als ein Reaktionsprodukt wie erwartet $Cp(CO)_2Mn-P(O^iC_3H_7)_3$. Als zweites Reaktionsprodukt erhält man IIg.

In IIg ist nach dem Ergebnis der Röntgenstrukturanalyse ein μ_3 -Phosphoratom des Clustergrundgerüstes nicht an ein 16-Elektronenfragment koordiniert, während das zweite Phosphoratom wie im Edukt noch an eine Cp(CO)₂Mn-Gruppe gebunden ist. Zugleich ist gegenüber dem Edukt an jeder der drei (CO)₃Fe-Gruppen eine Carbonylfunktion durch einen P(OⁱC₃H₇)₃-Liganden substituiert.

Für die Verbindungen II sind die ³¹P-NMR-Signale von beträchtlichen diagnostischen Wert: Die chemischen Verschiebungen liegen jeweils oberhalb 700 ppm, d.h. in einem Bereich, in dem nur wenige Verbindungsklassen ihre Phosphorresonanzen zeigen. Noch grössere paramagnetische Verschiebungen werden nur für Phosphini-

Fig. 1. Die Strukturen von IIa (links oben), IIc (rechts oben). IIf (links unten) und IIg (rechts unten) im Kristall [5] (Tab. 6, exp. Teil).

denkomplexe $(L_n M)_2 P-R$ [6,7] beobachtet, unter denen $[(CO)_5 Cr]_2 P^{-1}$ Bu mit δ 1362 ppm [6] den bislang grössten Verschiebungswert unter allen Phosphorverbindungen aufweist.

μ₅-Phosphor

An verschiedenen Beispielen war schon früher gezeigt worden [1,3,8–10], dass ein Phosphoratom in einem Cluster mit mehr als drei oder vier Metallatomen (Verbindungen I und II) in Wechselwirkungen treten kann. Das einzige Beispiel einer Verbindung in der ein Phosphoratom als μ_5 -Brücke wirkt ist IIh. Es entsteht bei der Umsetzung von Fe₂(CO)₉ mit Cp(CO)₂Mn-PCl₃ neben IIa und IIc.

Die Verbindung enthält nach dem Ergebnis der Röntgenstrukturanalyse (s.u.) zwei verschieden koordinierte Phosphoratome. Ein Phosphoratom wirkt wie in den anderen Clustern II gegenüber einer Fe₃-Einheit als μ_3 -Brücke und ist zusätzlich an eine Cp(CO)₂Mn-Einheit gebunden. Das zweite Phosphoratom baut ebenfalls drei Bindungen zum zentralen Eisendreieck auf; zusätzlich ist es jedoch an eine Fe₂(CO)₈-Einheit gebunden. Die eine (CO)₄Fe-Gruppe dieser Einheit steht nur mit diesem Phosphoratom in Wechselwirkung, die andere (CO)₄Fe-Gruppe ist an eine Fe(CO)₂-Gruppe des zentralen Fe₃(CO)₈-Dreiecks gebunden; zugleich steht sie mit

Fig. 2. Die Struktur von IIh im Kristall [5] (Tab. 6, exp. Teil).

dem Brückenphosphor in Wechselwirkung. Der entsprechende Eisen-Phosphor-Abstand ist zwar um etwa 25 pm länger als die anderen Phosphor-Eisen-Abstände im Molekül, liegt aber sicher im bindenden Bereich. Für den Elektronenhaushalt ist diese Bindung im Rahmen der üblichen Zählregeln nicht erforderlich. Im Rahmen dieser einfachen Modelle stört sie jedoch nicht, da das Phosphoratom auf jeden Fall mit allen fünf Elektronen am Elektronenhaushalt des Clusters beteiligt ist.

Arsen und Antimon als Baugruppen

Die Reaktion, die ausgehend von dem Chlorphosphiniden-Komplex $[(CO)_5Cr]_2$ -P-Cl mit Na₂Fe(CO)₄ zu dem Cluster IIf (s.o.) führt, lässt sich mit ähnlichem Ergebnis mit den stabileren Halogenarsiniden- [11] und Halogenstibiniden- [12] -Komplexen durchführen.

Die Verbindungen IIi, j werden dabei nach Chromatographie und Kristallisation als analysenreine kristalline Festkörper erhalten. Die in der Gleichung vorgeschlagene Bindungsform ergibt sich zweifelsfrei aus dem Vergleich der physikalisch-chemischen Daten von IIi, IIj mit denen analoger μ_3 -Phosphorcluster vom Typ II. Das Grundgerüst von IIi, Fe₃(CO)₉(μ_3 -As)₂, ist zudem bekannt [2a] und strukturanalytisch gesichert [2b].

μ_4 -Phosphor als Spirozentrum

Die Bildung von Spiroverbindungen mit Phosphor in einer μ_4 -Brückenposition war bereits früher bei der Umsetzung von PCl₃ mit Fe₂(CO)₉ beobachtet worden [3].

Analog zu PCl₃ reagiert PBr₃ mit Fe₂(CO)₉ unter Bildung von IIIa. In seinen Eigenschaften gleicht IIIa der früher charakterisierten Verbindung Fe₄(CO)₁₄(μ_2 -Cl)(μ_4 -P) [3], in der an Stelle des μ_2 -Bromliganden eine μ_2 -Chloreinheit gebunden ist. Besonders charakteristisch ist das ³¹P-NMR-Resonanzsignal bei 439 ppm, d.h. in dem selben Bereich in dem das μ_2 -Chloranaloge von IIIa absorbiert [3].

Während so die Bildung der Spiroverbindung III charakteristisch für die Umsetzung von $Fe_2(CO)_9$ mit freien Trihalogenphosphanen zu sein scheint, erhält man auch bei der Reaktion von $(CO)_5W-PBr_3$ mit $Fe_2(CO)_9$ ein Spiroderivat, die Verbindung IIIb.

Ein Produkt des Typs IIIb konnte bei keiner anderen Umsetzung von Fe₂(CO)₉ mit L_nM -PHal₃ ($L_nM = Cp(CO)_2Mn$, Hal = Cl, Br; $L_nM = (CO)_5Cr$, Hal = Cl, Br; $L_nM = (CO)_5Mn$, Hal = Cl) erhalten werden.

In IIIb ist die $Fe_2(CO)_8$ -Einheit von IIIa durch eine $(CO)_4Fe/(CO)_5W$ -Gruppierung ersetzt. Es ist wahrscheinlich, dass das $(CO)_5W$ -Derivat IIIb im Gegensatz zu analogen $(CO)_5Cr$, Mo- oder $Cp(CO)_2Mn$ -Derivaten deswegen isoliert werden kann, weil die $(CO)_5W$ -Gruppe mit ihren weitausgreifenden Valenzorbitalen [13] leichter in einen dreigliedrigeren Ring integriert werden kann, als dies für die anderen 16-Elektronenkomplexfragmente möglich wäre [14].

Fig. 3. Die Struktur von IIIb im Kristall [5] (Tab. 6, exp. Teil).

Die charakteristische Phosphorresonanz für IIIb tritt bei 478 ppm auf. Der Bau von IIIb ist durch eine Röntgenstrukturanalyse belegt (Fig. 3; Tab. 6, exp. Teil)

Diphosphor als Clusterbaustein

Bei der Umsetzung von $(CO)_5Cr-PBr_3$ mit Fe₂ $(CO)_9$ erhält man neben Komplexen des Typs II und IV (s.o.) den Diphosphorkomplex V.

In ihm wirkt die Diphosphoreinheit, wie in den Verbindungen $Co_2(CO)_6P_2(ML_n)_2$ ($ML_n = (CO)_5Cr$, (CO)₅W, Cp(CO)₂Mn) [1b], als 8-Elektronenligand. Der analoge Aufbau der Clustergerüste von $Co_2(CO)_6P_2(ML_n)_2$ und $Fe_2(CO)_7P_2[Cr(CO)_5]_2$ (V) ist verständlich, da die Gruppen $Fe_2(CO)_7$ und $Co_2(CO)_6$ isoelektronische Baueinheiten darstellen. Besonders interessant ist hier der Vergleich mit I, da sich die Verbindungen I und V bezüglich des Elektronenhaushaltes im Wesentlich nur durch die eine Carbonylgruppe unterscheiden, die V gegenüber I zusätzlich als Brückenliganden gebunden enthält.

Während die Phosphorzentren in I mit allen fünf Valenzelektronen an der Bindung beteiligt sind und trigonal-planar-koordinierte Phosphorbrücken bilden, ist in V eine Diphosphoreinheit mit ihren 4 π -Elektronen side-on an die Fe₂(CO)₇-Gruppe gebunden und zugleich end-on über die "freien Elektronenpaare" mit zwei 16-Elektronen-L_nM-Fragmenten ((CO)₅Cr) verknüpft. Während in I die beiden Phosphoratome daher insgesamt zehn Elektronen zum Elektronenhaushalt beisteuern, liefert die side-on und end-on koordinierte Diphosphorgruppe von V insgesamt acht Elektronen. Beide Verbindungen sind auf diese Weise an allen Zentren edelgaskonfiguriert. Als Verbindungspaar gesehen zeigen die Komplexe I und V, dass ein Unterschied von zwei Elektronen im Gesamthaushalt dieser Cluster die vollständige Öffnung der koordinierten Dreifachbindung einer Diphosphoreinheit bewirkt.

Als Ergebnis der Röntgenstrukturanalyse von V findet man einen sehr kurzen

166

Fig. 4. Die Struktur von V im Kristall [5] (Tab. 6, exp. Teil).

Phosphor-Phosphor-Abstand von 208.7 pm, der zu der hier gegebenen Beschreibung der Verbindung als Derivat des Liganden P_2 passt.

Experimenteller Teil

Alle Arbeiten wurden unter Schutzgas (N_2) in getrockneten und frisch destillierten Lösungsmitteln durchgeführt. Das zur Chromatographie verwendete Kieselgel (Woelm-Pharma, Korngrösse 0.063-0.200 mm) wurde am Hochvakuum von Sauerstoff befreit und unter N_2 aufbewahrt.

IR-Spektren: Zeiss, IMR 40 CaF₂-Küvetten; wobei gilt: vs = sehr scharf, s = scharf, sh = Schulter, m = mittel, w = schwach, vw = sehr schwach, b = breit.

³¹P-FT-NMR-Spektren: Bruker WP 80-FT, 32.38 MHz, in Toluol bei 273 K, Standard: $P(OMe)_3$ mit $\delta(P(OMe)_3)$ 139 ppm rel. 85% H₃PO₄).

¹H-NMR-Spektren: Bruker WP 80-FT, 80 MHz, Standard: intern durch Lösungsmittel: Aceton- d_6 2.05 ppm, CDCl₃ 7.25 ppm rel. TMS; wobei: S = Singulett, D = Dublett, M = Multiplett, b = breit.

Für alle NMR-Spektren sind die angegebenen Werte der chemischen Verschiebung δ -Werte in ppm (positiv = tieferes Feld, negativ = höheres Feld).

Massenspektren: Finnigan (Varian) MAT 112S; CHN-Elementaranalysen: CHN-Analysator der Fa. Carlo Erba. Die Schmelz-, Zersetzungs- bzw. Sublimationspunkte stellen unkorrigierte Werte dar.

(A) Darstellung der Ausgangsverbindungen $L_n M$ -PHal₃ [15-22]

Die zu den Synthesen verwendeten Trihalogenphosphan-Komplexe $L_nM-PHal_3$ $(L_nM = (CO)_5Cr, (CO)_5Mo, (CO)_5W, Cp(CO)_2Mn; Hal = Cl, Br)$ wurden nach den in Lit. 15, 16 zitierten Methoden, ausgehend von L_nM-THF in THF durch Austausch des THF gegen PHal₃ (Hal = Cl, Br), analog dargestellt. Die Darstellung von $(CO)_5$ Mo-PCl₃ [17], $Cp(CO)_2$ Mn-PCl₃ [16] und $(CH_3C_5H_4)(CO)_2$ Mn-PCl₃ erfolgte mit folgenden Details.

(a) $(CO)_5 Mo-PCl_3$ [17]. 4.5 g (17.05 mmol) Mo(CO)₆ werden in 400 ml THF in einer Duranbestrahlungsapparatur gelöst und unter Rühren und Durchleiten von N₂ durch die Lösung 5.5 h bei 10°C bestrahlt. Die orange gefärbte (CO)₅Mo(THF)-Lösung wird danach mit 2.06 g (15 mmol) PCl₃ versetzt und bei 25°C 4 h gerührt. Nach Entfernen des Lösungsmittels am Hochvak. wird der gelb-orange Rückstand in 80 ml n-Pentan aufgenommen und bei -78°C auskristallisiert. Die überstehende Lösung wird dekantiert und von dem Rückstand bei 25°C überschüssiges Mo(CO)₆ an einen wassergekühlten Sublimationsfinger sublimiert. Das so erhaltene Produkt kristallisiert man noch zweimal aus n-Pentan und wenig Toluol um.

 $(CO)_5Mo-PCl_3$ zersetzt sich langsam bei 20°C und Lichteinwirkung. Die Aufarbeitung sollte deshalb rasch erfolgen. Die gebildeten orangefarbenen Zersetzungsprodukte sind in Toluol oder CH_2Cl_2 unlöslich.

Ausbeute: 2.1 g (33% bez. auf eingesetztes $Mo(CO)_6$). Gef.: C, 15.87. C₅Cl₃MoO₅P (373.33) ber.: C, 16.09%. Schmp.: 30°C. IR (ν (CO), n-Pentan): 2095m, 2002s, 1988vs, 1957vw. ³¹P-NMR (Toluol, 273 K): 155.6 (S, 1P). MS [m/e(rel. Int.)]: M^+ 372(8), M^+ - Cl 337(28), M^+ - Cl - CO 309(17), M^+ - Cl - 2CO 281(9), M^+ - Cl - 3CO 253(20), M^+ - Cl - 4CO 225(15), M^+ - Cl - 5CO 197(61), M^+ - 2CO 316(13), M^+ - 3CO 288(11), M^+ - 4CO 260(38), M^+ - 5CO 232(69), M^+ - 2Cl - 5CO 162(40), PCl₃⁺ 137(21), PCl₂⁺ 101(84), PCl⁺ 66(53), MoP⁺ 127(57), Mo⁺ 96(100).

(b) Darstellung von Cp(CO), $Mn-PCl_3$ [16] und $(CH_3C_5H_4)(CO)$, $Mn-PCl_3$. 4.5 g (22.06 mmol) CpMn(CO)₃ bzw. 4.5 g (20.64 mmol) (CH₃C₅H₄)Mn(CO)₃ werden in 400 ml THF gelöst und bei 10°C 3.5 h bestrahlt, wobei das freigesetzte CO in einer pneumatischen Wanne aufgefangen wird und bei Reaktionsende ein Volumen von 350 ml (= 71% Umsatz) aufweist. Anschliessend wird mit 2.12 g (15.4 mmol) PCl₃ versetzt, wobei sich die intensiv rote Lösung des Cp(CO)₂Mn(THF)-Komplexes innerhalb 12 h gelb färbt. Nach dem Entfernen des Lösungsmittels am Hochvak, wird der ölige Rückstand in 100 ml n-Pentan aufgenommen und auf -78°C abgekühlt. Die überstehende Lösung wird dekantiert und im Falle von CpMn(CO)₃ aus dem gelben Rückstand das unumgesetzte CpMn(CO)₃ an einen wassergekühlten Sublimationsfinger sublimiert. Das verbleibende gelbe Rohprodukt, das noch einen farblosen unlöslichen Feststoff enthält, wird in 20 ml Toluol aufgenommen und über eine mit Silicagel beschichtete Fritte $(10 \times 2.5 \text{ cm})$ filtriert. Anschliessend engt man das Filtrat ein, überschichtet mit 10 ml n-Pentan und kühlt auf -78°C ab. Nach Abdekantieren der überstehenden Lösung erhält man Cp(CO)₂Mn-PCl₃ in Form eines gelben, zähflüssigen Öles.

Bei der Darstellung von $(CH_3C_5H_4)(CO)_2Mn-PCl_3$ wird das Rohprodukt bei $-30^{\circ}C$ an Kieselgel chromatographiert (Säulendimension: 20×1.5 cm; n-Pentan). Mit reinem n-Pentan wird unumgesetztes Edukt ausgewaschen. Mit n-Pentan/Toluol 10/1 eluiert man $(CH_3C_5H_4)(CO)_2Mn-PCl_3$ als gelbe Zone, die nach Entfernen des Lösungsmittels bei 10^{-2} mbar analysenrein anfällt.

Ausbeuten: $Cp(CO)_2Mn-PCl_3$ 4.0 g (58%); $(CH_3C_5H_4)(CO)_2Mn-PCl_3$ 3.7 g (55%). Die Ausbeuten bez. sich auf eingesetztes $CpMn(CO)_3$ bzw. $(CH_3C_5H_4)Mn-(CO)_3$.

 $Cp(CO)_2Mn-PCl_3$ [16]: Gef.: C, 26.37; H, 1.57. C₇H₅Cl₃MnO₂P (313.39) ber.: C, 26.83; H, 1.61%. IR (ν (CO), n-Pentan): 1996s, 1947s. ³¹P-NMR (Toluol, 273 K):

166 (S, 1P). ¹H-NMR (Aceton- d_6): 5.0 (D, 5H, J(PH) 2.4 Hz). MS [m/e(rel. Int.)]: M^+ 312(63), M^+ -2CO 256(34), M^+ -Cl 277(54), M^+ -2CO -Cl 221(16), PCl₃⁺ 137(64), PCl₂⁺ 101(16), PC1⁺ 66(18), CpMnCl⁺ 155(100), CpMn⁺ 120(100), MnCl⁺ 90(100), Mn⁺ 55(100).

 $(CH_3C_5H_4)(CO)_2Mn-PCl_3$: Gef.: C, 29.24; H, 2.03. $C_8H_7Cl_3MnO_2P$ (327.41) ber.: C, 29.35; H, 2.14%. IR (ν (CO) n-Pentan): 1992 s, 1943 s. ³¹P-NMR (Toluol, 273 K): 168.7 (S, 1P). ¹H-NMR (CDCl_3): 2.0 (S, 3H), 4.63 (D, 4H, J(PH) 2.2 Hz). MS [m/e(rel. Int.)]: M^+ 326(11), M^+ - 2CO 270(5), M^+ - Cl 291(15), M^+ - 2CO - Cl 235(16), PCl₂⁺ 101(5), PCl⁺ 66(6), (CH₃C₅H₄)Mn⁺ 134(76), MnCl⁺ 90(42), Mn⁺ 55(100).

Die spektroskopischen Daten der anderen Trihalogenphosphan-Komplexe entsprechen den in der Literatur beschriebenen (vgl. Lit. 16-22).

(B) Darstellung von $L_n M(\mu_4 - P)Fe_3(CO)_9(\mu_4 - P)M'L_n$ $(ML_n = M'L_n = Cp(CO)_2Mn$ (IIa); $= (CH_3C_5H_4)(CO)_2Mn$, (IIb); $ML_n = Cp(CO)_2Mn$, $M'L_n = (CO)_4Fe$ (IIc) und $ML_n = Cp(CO)_2Mn$, $M'L_n = Fe_2(CO)_8$ (IIh))

In einer Lösung von 1 g (3.19 mmol) $Cp(CO)_2Mn-PCl_3$ [16] bzw. 1 g (3.04 mmol) $(CH_3C_5H_4)(CO)_2Mn-PCl_3$ in 200 ml Toluol werden 14 g (38.46 mmol) $Fe_2(CO)_9$ suspendiert und bei 50°C 6 h gerührt. Die rotbraune Lösung wird von einem hellbraunen Niederschlag über Kieselgel abfiltriert. Das Lösungsmittel wird bei 10^{-2} mbar entfernt, der Rückstand in CH_2Cl_2 aufgenommen und auf 5 g Kieselgel bis zu dessen Rieselfähigkeit aufgezogen. Das mit Reaktionsprodukten beladene Kieselgel bringt man bei $-25^{\circ}C$ auf eine Säule (Säulendimension: 40×2.5 cm) auf. Mit n-Pentan/Toluol 20/1 erhält man eine grüne Zone die $Fe_3(CO)_{12}$ enthält. Anschliessend folgt mit n-Pentan/Toluol 8/1-5/1 eine kleine rote Zone, aus der sich nach Abziehen des Lösungsmittels und mehrfachem Umkristallisieren 50 mg (4% bez. auf Cp(CO)_2Mn-PCl_3) IIc isolieren lassen. *Anm.*: Vor- und Nachlauf werden verworfen!

Mit n-Pentan/Toluol 5/1 eluiert man eine weitere tiefrote Zone, aus der man IIa (600 mg, 45% bez. auf $Cp(CO)_2Mn-PCl_3$) bzw. IIb (700 mg, 53% bez. auf $(CH_3C_5H_4)(CO)_2Mn-PCl_3$) nach Entfernen des Lösungsmittels und Umkristallisation aus n-Pentan/CH₂Cl₂ bei - 30°C in Form tiefroter Kristalle erhält.

Nach mehreren kleinen Zonen wandert mit Toluol/CH₂Cl₂ 1/1 eine braune Zone, aus der nach zu oben analoger Aufarbeitung, 120 mg (8% bez. auf Cp(CO)₂Mn-PCl₃) IIh in Form metallisch glänzender, tiefbrauner Kristalle isoliert werden können.

Die spektroskopischen Daten von IIa, IIb, IIc und IIh sind in den Tabellen 4 und 5 zusammengestellt. Analysenwerte, Zersetzungspunkte und Molmassen sind der Tab. 1 zu entnehmen.

(C) Darstellung von IIa ausgehend von I und $Fe_2(CO)_{o}$

400 mg (0.58 mmol) I [1a] werden in 100 ml Toluol oder THF gelöst, mit 6 g (16.48 mmol) Fe₂(CO)₉ versetzt, langsam auf 75°C erwärmt und 3.5 h weitergerührt. Die Farbe der Reaktionslösung wechselt von rot nach grün. Man entfernt am Hochvak. das Lösungsmittel, löst den Rückstand in 20 ml CH₂Cl₂ und zieht diesen auf 3 g Kieselgel auf. Die Produkttrennung erfolgt chromatographisch (Säulendimension: 15×2.5 cm, -20°C, n-Pentan). Mit n-Pentan/Toluol 20/1-10/1 wird

TABELLE 1

Verbin-	Schmp. ^a	Summenformel	Analyse (C	6 (ber.) (%)	
dung (°C)	(°C)	(Molmasse)	c	Н	Р
IIa	220	C23H10Fe3Mn2O13P2	33.20	1.26	ada r an an am ará a ta a st
		(833.70)	(33.13)	(1.21)	
ΙΙЪ	205	C ₂₅ H ₁₄ Fe ₃ Mn ₂ O ₁₃ P ₂	34.69	1.80	6.50
		(861.76)	(34.84)	(1.64)	(7.19)
IIc	165	$C_{20}H_5Fe_4MnO_{15}P_2$	28.86	0.69	
		(825.63)	(29.10)	(0.61)	
IIh	185	$C_{23}H_5Fe_5MnO_{18}P_2$	28.58	0.69	
		(965.41)	(28.61)	(0.52)	

ANALYTISCHE DATEN DER KOMPLEXE IIa, IIb, IIc, UND IIh

^a Unkorrigierte Werte; Zersetzungspunkte.

eine grüne Zone von $Fe_3(CO)_{12}$ eluiert. Mit n-Pentan/Toluol 5/1-4/1 folgt eine tiefrote Zone, aus der man IIa nach Entfernen des Lösungsmittels und Umkristallisieren aus n-Pentan/Toluol in Form tiefroter Kristalle erhält.

Ausbeute: 280 mg (58% bez. auf I). Die weiteren analytischen Daten von IIa sind unter (B) beschrieben.

(D) Darstellung von $(\mu_3 - P)Fe_3(CO)_6 [P(O^iC_3H_7)_3]_3(\mu_4 - P)MnCp(CO)_7$ (IIg)

500 mg (0.6 mmol) IIa in 400 ml Toluol gelöst, werden mit drei Moläquivalenten $P(O^iC_3H_7)_3$ gemeinsam 3.5 h bei 10°C unter Durchleiten von N_2 durch die Reaktionslösung bestrahlt. Dabei färbt sich die ursprünglich intensiv rote Lösung langsam braun und mit zunehmender Reaktionszeit wird das Ausfallen eines in Toluol unlöslichen Niederschlags beobachtet. Nach Filtrieren über ca. 3 cm Kieselgel wird das Lösungsmittel bei 40°C am Hochvak. entfernt. Das verbleibende braune Rohprodukt wird auf 4 g Kieselgel aufgezogen und bei -20° C chromatographiert (Säulendimension: 15×2 cm, n-Pentan). Nach einem gelben Vorlauf, der mit n-Pentan wandert (enthält Cp(CO)₂Mn-P(OⁱC₃H₇)₃; Nachweis: IR- und MS-spektroskopisch), kann mit n-Pentan/Toluol 5/1 - Toluol eine breite braune Zone eluiert werden, aus der man nach Abziehen des Lösungsmittels und Umkristallisieren aus Toluol/n-Pentan dunkelbraune, metallisch glänzende Kristalle von IIg erhält.

Ausbeute: 400 mg (56% bez. auf eingesetztes IIa). Gef.: C, 40.02; H, 5.70; Fe, 14.94; P, 12.50. $C_{40}H_{68}Fe_3MnO_{17}P_5$ (1198.33) ber.: C, 40.09; H, 5.72; Fe, 13.98; P, 12.92%. Schmp.: 214°C (Zers.). IR (ν (CO) n-Pentan): 2019m, 2012m, 1981vs, 1971vs, 1959m, 1947s, 1938s, 1918w, 1901m. ³¹P-NMR (273 K, CH₂Cl₂): 160 (M, 3P), 775 (bS, 1P), 913 (bS, 1P). ¹H-NMR (CDCl₃): 1.34 (D, 54H, J(HH) 6.1 Hz), 4.78 (M, 9H), 4.99(D, 5H, J(PH) 1.8 Hz). MS [m/e (rel. Int.)]: M^+ 1198(1), M^+ -2CO 1142(1), $M^+ - P(O^iC_3H_7)_3 - CO 962(1), M^+ - P(O^iC_3H_7)_3 - 3CO 906(1),$ $M^+ - P(O^iC_3H_7)_3 - 4CO 878(3), M^+ - P(O^iC_3H_7)_3 - 5CO 850(1), M^+$ $- P(O^iC_3H_7)_3 - 7CO 794(1), M^+ - P(O^iC_3H_7)_3 - 8CO 766(1), Fe_3(CO)_6P_2Mn Cp(CO)_2P(O^iC_3H_7)_3^+ 782(1), Fe_3(CO)_5P_2MnCp(CO)_2P(O^iC_3H_7)_3^+ 754(1),$ $Fe_3(CO)_3P_2 MnCp(CO)_2P(O^iC_3H_7)_3^+ 698(2), Fe_3(CO)_2P_2MnCp(CO)_2$ $\begin{array}{lll} P(O^{i}C_{3}H_{7})_{3}^{+} & 670(1), & Fe_{3}(CO)P_{2}MnCp(CO)_{2}P(O^{i}C_{3}H_{7})_{3}^{+} & 642(2), & Fe_{3}P_{2}MnCp(CO)_{2}P(O^{i}C_{3}H_{7})_{3}^{+} & 614(1), & Fe_{3}P_{2}MnCp(CO)P(O^{i}C_{3}H_{7})_{3}^{+} & 586(1), & Fe_{3}(CO)_{2}Mn-CpP_{2}P(O^{i}C_{3}H_{7})_{2}^{+} & 555(1), & Fe_{3}(CO)_{2}MnCpPP(O^{i}C_{3}H_{7})_{2}^{+} & 524(1), & Fe_{3}(CO)_{2}Mn-CpP_{2}P(O^{i}C_{3}H_{7})_{7}^{+} & 496(2), & Fe_{3}P_{3}MnCp(CO)_{2}^{+} & 437(1), & Fe_{3}P_{4}MnCp^{+} & 412(1), & Fe_{3}P_{3}Mn-Cp^{+} & 381(1), & Fe_{3}P_{2}MnCp^{+} & 350(1), & Fe_{3}PMnCp^{+} & 319(1), & MnP_{2}Fe_{2}^{+} & 229(1), & P(O^{i}C_{3}-H_{7})_{3}^{+} & 208(7), & PO(O^{i}C_{3}H_{7})_{2}^{+} & 165(8), & P(O^{i}C_{3}H_{7})_{2}^{+} & 149(10), & MnCp^{+} & 120(100), \\ PO(O^{i}C_{3}H_{7})^{+} & 106(55), & P(O^{i}C_{3}H_{7})^{+} & 90(9), & Cp^{+} & 65(24), & Fe^{+} & 56(1), & O^{i}C_{3}H_{7}^{+} & 59(5), \\ Mn^{+} & 55(1), & iC_{3}H_{7}^{+} & 43(46). \end{array}$

(E) Darstellung von $[(CO)_5Cr]_2P_2Fe_2(CO)_7$ (V) $(CO)_5Cr(\mu_4-P)Fe_3(CO)_9(\mu_4-P)-Fe(CO)_4$ (IIf) und $(CO)_5Cr-P(H)-Fe(CO)_4-Fe(CO)_4$ (IV)

(a) 1 g (2.16 mmol) (CO)₅Cr-PBr₃ [18,19] wird mit 5 g (13.74 mmol) Fe₂(CO)₉ bei 45°C in Toluol zur Reaktion gebracht. Nach wenigen Minuten färbt sich die orangefarbene Reaktionslösung rot, nach 2.5 h rotbraun. Das Lösungsmittel wird am Hochvak. entfernt und der Rückstand auf 5 g Kieselgel aufgezogen. Die Trennung der Reaktionsprodukte erfolgt durch Tieftemperaturchromatographie (Säulendimension: 40×2.5 cm, -25° C, n-Pentan). Nach einem grünen Vorlauf von Fe₃(CO)₁₂ erhält man mit n-Pentan/Toluol (5/1-4/1) eine weinrote Zone, aus der man nach Abziehen des Lösungsmittels und Umkristallisieren aus n-Pentan/Toluol bei -30° C die Verbindung IIf in 200 mg (22% bez. auf (CO)₅Cr-PBr₃) Ausbeute erhält.

Mit n-Pentan/Toluol (4/1-2/1) wird eine intensiv braune, langgestreckte Zone eluiert, aus der die Diphosphorverbindung V (230 mg, 28% bez. auf (CO)₅Cr-PBr₃) nach Entfernen des Lösungsmittels und Umkristallisieren aus n-Pentan/Toluol in Form dunkelvioletter, metallisch glänzender Kristalle isoliert werden kann. Mit Toluol/CH₂Cl₂ (1/1) erhält man eine weitere, wenngleich kleinere rote Zone, aus der die Verbindung IVa isoliert wird.

Ausbeute: 100 mg (8% bez. auf (CO)₅Cr-PBr₃).

Anm.: Führt man die oben beschriebene Reaktion bei 75°C und einer Reaktionszeit von 48 h mit dem Molverhältnis von $(CO)_5 Cr-PBr_3/Fe_2(CO)_9 = 1/23$ (1 g (2.16 mmol) $(CO)_5 Cr-PBr_3$ und 18 g (49.45 mmol) $Fe_2(CO)_9$) durch, so wird als Hauptprodukt der Cluster IIf (500 mg, 55% bez. auf $(CO)_5 Cr-PBr_3$), neben 120 mg (10% bez. auf $(CO)_5 Cr-PBr_3$) IVa isoliert.

Die Bildung des Diphosphorkomplexes V wird unter diesen Bedingungen nicht beobachtet.

Die spektroskopischen Daten von IIf sind in den Tabellen 4 und 5 zusammengefasst. Analysendaten, Zersetzungspunkte und Molmassen der Komplexe IIf, IVa und V sind Tab. 2 zu entnehmen.

Spektroskopische Daten von V. IR (ν (CO), n-Pentan): 2104vw, 2071vs, 2064vs, 2046s, 2038s, 2034s, 2017w, 2007m, 1997w, 1984w, 1975s, 1972s, 1967s, 1956m, 1934vw, 1899w. ³¹P-NMR (Toluol, 273 K): 107 (S, 2P). MS [m/e (rel. Int.)]: M^+ 754(5), $M^+ - \text{CO}$ 726(4), $M^+ - 2\text{CO}$ 698(1), $M^+ - 3\text{CO}$ 670(1), $M^+ - 4\text{CO}$ 642(1), $M^+ - 5\text{CO}$ 614(2), $M^+ - 6\text{CO}$ 586(6), $M^+ - 7\text{CO}$ 558(5), $M^+ - 8\text{CO}$ 530(9), $M^+ - 9\text{CO}$ 502(10), $M^+ - 10\text{CO}$ 474(8), $M^+ - 11\text{CO}$ 446(11), $M^+ - 12\text{CO}$ 418(6), $M^+ - 13\text{CO}$ 390(7), $M^+ - 14\text{CO}$ 362(8), $M^+ - 15\text{CO}$ 334(7), $M^+ - 16\text{CO}$ 306(6), $M^+ - 17\text{CO}$ 278(17), Fe₂P₂Cr⁺ 226(6), Cr₂P₂Fe⁺ 222(5), CrFeP₂⁺ 170(5), Cr₂P₂⁺ 166(4), Cr₂P⁺ 135(6), FeP⁺ 87(67), CrP⁺ 83(100), Fe⁺ 56(22), Cr⁺ 52(82).

TABELLE 2

Verbin-	Schmp. ^a	Summenformel	Analyse (Gef. (ber.) (%))			
dung (°C	(°C)	(Molmasse)	c	Н	Fe	Р
IIf	96	$\frac{C_{18}CrFe_4O_{18}P_2}{(841.52)}$	26.27 (25.69)		26.40 (26.55)	7.30 (7.36)
IVa	119	C ₁₃ HCrFe ₂ O ₁₃ P (559.81)	27.98 (27.89)	0.18 (0.18)	20.97 (19.95)	
V	91	$C_{17}Cr_2Fe_2O_{17}P_2$ (753.81)	26.98 (27.09)		15.08 (14.82)	

ANALYTISCHE DATEN DER KOMPLEXE IIf, IVa UND V

^a Unkorrigierte Werte; Zersetzungspunkte.

(b) Umsetzung von $(CO)_5Cr-PCl_3$ [16,20] mit Fe₂ $(CO)_9$

Die analoge Umsetzung von 1.8 g (5.46 mmol) $(CO)_5 Cr - PCl_3$ [16,20] mit 9.9 g (27.20 mmol) Fe₂(CO)₉ in 200 ml Toluol ergibt nach chromatographischer Aufarbeitung neben mehreren kleinen Zonen, die noch nicht näher charakterisierte Verbindungen enthalten, als Hauptzone IVa. Die Verbindung IVa wird durch Umkristallisation aus n-Pentan/CH₂Cl₂ bei - 30°C in Form dunkelroter Nadeln erhalten. Ausbeute: 360 mg (12% bez. auf (CO)₅Cr-PCl₃)

(F) Synthese von IIf durch Umsetzung von $[(CO)_5Cr]_2P-Cl$ [23] mit Na₂Fe(CO)₄

Zu 700 mg (1.63 mmol) Na₂[Cr₂(CO)₁₀] [21] in 30 ml THF werden 0.14 ml (0.224 g, 1.63 mmol) PCl₃ hinzupipettiert. Die Farbe der zuvor orangefarbenen Lösung verdunkelt sich. Das Lösungsmittel wird sofort am Hochvak. entfernt und der verbleibende intensiv rotviolette Rückstand über 10 cm Kieselgur mit n-Pentan/CH₂Cl₂ (10/1) filtriert [23]. Das vom Lösungsmittel befreite Filtrat wird in 50 ml THF aufgenommen und tropfenweise mit einer Lösung von 350 mg (1.64 mmol) Na₂Fe(CO)₄ in 50 ml THF versetzt. Die Farbe wechselt nach rot. Nach beendeter Zugabe rührt man noch 30 min weiter und zieht dann das Reaktionsgemisch auf 3 g Kieselgel bis zu dessen Rieselfähigkeit auf. Durch Tieftemperaturchromatographie über Kieselgel (Säulendimension: 15×1.5 cm, -20° C, n-Pentan) erhält man mit n-Pentan/Toluol (20/1-10/1) als grüne Zone Fe₃(CO)₁₂. Mit n-Pentan/Toluol (5/1-2/1) wird eine intensiv rote Zone isoliert, aus der sich nach Entfernen des Lösungsmittels die Verbindung IIf abtrennen lässt.

Ausbeute: 80 mg (12% bez. auf eingesetztes PCl₃).

Die analytischen und spektroskopischen Daten von IIf sind unter (E) beschrieben.

(G) Synthese von $(CO)_5 W(\mu_4 - P)Fe_3(CO)_9(\mu_4 - P)W(CO)_5$ (IIe) $(\mu_2 - Br)Fe_2(CO)_6 - (\mu_4 - P)[Fe(CO)_4][W(CO)_5]$ (IIIb) und $(CO)_5 W - \overline{P(H)} - Fe(CO)_4 - Fe(CO)_4$ (IVa)

(a) Umsetzung von $(CO)_5W-PCl_3$ [16,22] mit $Fe_2(CO)_9$

Analog zu(B) wird 1 g (2.17 mmol) $(CO)_5W-PCl_3$ [16,22] mit 4.1 g (11.26 mmol) Fe₂(CO)₉ in 200 ml Toluol umgesetzt. Säulenchromatographie (Säulendimension: 35×2.5 cm, -25° C, n-Pentan) über Kieselgel ergibt mit n-Pentan/Toluol (20/1)

als erste Zone $Fe_3(CO)_{12}$. Mit n-Pentan/Toluol (8/1-5/1) eluiert man nach einem hellgelben Vorlauf (unumgesetztes $(CO)_5W-PCl_3$) eine rotbraune, langgestreckte Zone, aus der die Verbindung IIe durch Abziehen des Lösungsmittels und Umkristallisieren aus n-Pentan/Toluol analysenrein isoliert wird.

Ausbeute: 350 mg (29% bez. auf $(CO)_5W-PCl_3$). Mit n-Pentan/Toluol (1/1) folgen zwei weitere braune Zonen, die bisher nicht vollständig charakterisierte Verbindungen enthalten. Mit Toluol/CH₂Cl₂ (10/1) eluiert man eine intensiv rote Zone, aus der sich IVb abtrennen lässt.

Ausbeute: 120 mg (8% bez. auf (CO)₅W-PCl₃).

(b) Umsetzung von $(CO)_5W-PBr_3$ [18,19] mit $Fe_2(CO)_9$

In Analogie zu (B) werden 1.2 g (2.02 mmol) $(CO)_5W-PBr_3$ [18,19] mit 5.3 g (14.56 mmol) Fe₂(CO)₉ zur Reaktion gebracht. Die Badtemperatur beträgt jedoch nur 35°C. Nach 2.5 h Reaktionszeit arbeitet man analog (B) auf. Durch Tieftemperaturchromatographie (Säulendimension: 30×2.5 cm, -20°C, n-Pentan) erhält man IIe als intensiv rote Zone mit n-Pentan/Toluol (6/1) (Ausbeute: 140 mg, 12% bez. auf (CO)₅W-PBr₃).

Mit n-Pentan/Toluol (6/1-4/1) wird die Spiroverbindung IIIb als langgestreckte, braune Zone ausgewaschen. Nach Umkristallisieren aus n-Pentan/Toluol erhält man IIIb in Form metallisch glänzender, schwarzer Quader, die sich in Lösung langsam zersetzen.

Ausbeute: 500 mg (28% bez. auf (CO)₅W-PBr₃). Die Verbindung IVb eluiert man mit n-Pentan/Toluol (1/1) - Toluol in 90 mg (6% bez. auf (CO)₅W-PBr₃) Ausbeute.

Die Analysenwerte, Zersetzungspunkte und Molmassen der Verbindungen IIe, IVb und IIIb sind in Tab. 3 zusammengestellt.

Die spektroskopischen Daten von IIe sind in den Tabellen 4 und 5 zusammengefasst.

Verbindung IIIb. IR (ν (CO), n-Pentan): 2110w, 2088vw, 2068s, 2045vs, 2033sh, 2004w, 1990m, 1983s, 1973s. ³¹P-NMR (Toluol, 273 K): 478 (S, 1P). MS [m/e(rel. Int.)]: M^+ 882(3), M^+ - CO 854(8), M^+ - 2CO 826(17), M^+ - 3CO 798(20), M^+ - 4CO 770(19), M^+ - 5CO 742(11), M^+ - 6CO 714(23), M^+ - 7CO 686(91), M^+ - 8CO 658(47), M^+ - 9CO 630(47), M^+ - 10CO 602(56), M^+ - 11CO 574(53), M^+ - 12CO 546(71), M^+ - 13CO 518(36), M^+ - 14CO 490(60), M^+ - 15CO

TABELLE 3

ANALYTISCHE DATEN DER KOMPLEXE IIe, IIIb UND IVb

Verbin- Schr dung (°C)	Schmp. a	Summenformel	Analyse (G	ef. (ber.) (%))	
	(°C)	(Molmasse)	C	Н	Fe
IIe	84	$C_{19}Fe_{3}O_{19}P_{2}W_{2}$ (1129.38)	20.36 (20.20)		14.16 (14.83)
ШЪ	119	C ₁₅ BrFe ₃ O ₁₅ PW (882.43)	20.54 (20.41)		18.94 (18.98)
IVb	133	C ₁₃ HFe ₂ O ₁₃ PW (691.66)	22.25 (22.57)	0.38 (0.15)	

^a Unkorrigierte Werte; Zersetzungspunkte.

462(100), Fe_2PWBr^+ 406(62), $FePWBr^+$ 350(28), Fe_2PW^+ 327(11), $FePW^+$ 271(36), W^+ 184(8), Fe^+ 56(70).

(H) Darstellung von $(CO)_5 Mo(\mu_4 - P)Fe_3(CO)_9(\mu_4 - P)Fe(CO)_4$ (IId)

2 g (5.36 mmol) (CO)₅Mo-PCl₃ [17] werden mit 6 g (16.48 mmol) Fe₂(CO)₉ in 250 ml Toluol bei 45°C 15 h umgesetzt. Die Farbe wechselt bereits nach 10 min nach rot. Nach Aufziehen auf 10 g Kieselgel erhält man durch Tieftemperaturchromatographie (Säulenlänge: 25×2.5 cm, -20° C, n-Pentan) einen grünen Vorlauf von Fe₃(CO)₁₂. Mit n-Pentan/Toluol (10/1-6/1) wird eine intensiv weinrote Zone, aus der sich IId in Form dunkelroter, metallisch glänzender Nadeln isolieren lässt, ausgewaschen. Durch Polaritätssteigerung der Laufmittel können noch mehrere kleinere Zonen isoliert werden; die Zusammensetzung der einzelnen Komponenten wird noch untersucht.

Ausbeute: 550 mg (23% bez. auf (CO)₅Mo-PCl₃). Gef.: C, 24.25; Fe, 25.26; P, 7.27. $C_{18}Fe_4MoO_{18}P_2$ (885.46) ber.: C, 24.41; Fe, 25.23; P, 7.00%. Schmp. 128°C (Zers.).

Die spektroskopischen Daten von IId sind den Tabellen 4 und 5 zu entnehmen.

TABELLE 4

SPEKTROSKOPISCHE DATEN DER VERBINDUNGEN II

Verbin-	IR ^a	³¹ P-NMR ^{<i>b</i>}	¹ H-NMR
dung	<pre>ν(CO)-Streckschwingungen (cm⁻¹)</pre>	δ(ppm)	δ(ppm)
IIa	2072vw, 2040s, 2034vs, 2006w, 1964m, 1926m	740(S)	5.16 (D,10H, J(PH) 2.0 Hz) ^c
ΙΙЬ	2071vw, 2037s, 2033vs, 2005w, 1961m, 1924m	742(S)	2.06 (S,6H); 4.75(S,4H) 4.88 (S,4H) ^d
llc	2087w, 2055vs, 2047vs, 2025m, 2018m, 2005m, 1999w, 1971m, 1964m, 1934m	714(S) 765(S)	5.15 (D,10H, <i>J</i> (PH) 2.0 Hz) ^d
IId	2075sh, 2070s, 2052vs, 2018w, 1992vw, 1983m 1972s, 1946vw,	708(S) 733(S)	
IIe	2072s, 2053vs, 2017m, 1976s, 1966s	736(S)	
IIf	2064s, 2055vs, 2018m, 1993vw, 1986m, 1966m	721(S) 745(S)	
IIh	2113s, 2070s, 2049vs, 2015m, 1994m, 1952w, 1905vw	761(S) 791(S)	5.05 (D,5H, J(PH) 2.2 Hz) ^d
IIi	2065m, 2048s, 2007w, 1982m, 1968m		
IIj	2064m, 2036s, 2003w, 1978m, 1965m		

^a In n-Pentan. ^b In CH₂Cl₂ bei 273 K. ^c In Aceton-d₆. ^d In CDCl₃.

(a) Darstellung von $[(CO)_5Cr]_2(\mu_4-As)_2Fe_3(CO)_9$ (IIi)

Eine Lösung von 200 mg (0.4 mmol) $[(CO)_5Cr]_2As-Cl [11]$ in THF wird mit 85 mg (0.4 mmol) Na₂Fe(CO)₄ umgesetzt, wobei man eine Farbänderung von blau nach gelb beobachtet. Nach Abziehen des Solvens wird der Rückstand über eine mit Kieselgel gefüllte Fritte (2 cm) filtriert. Mit Toluol kann eine braune Zone eluiert werden, die nach Umkristallisieren mit n-Pentan/CH₂Cl₂ ein schwarzes Kristallpulver von III ergibt.

Ausbeute: 50 mg (26% bez. auf $[(CO)_5Cr]_2As-Cl)$. Gef.: C, 23.69; Fe, 17.64; Cr, 10.40. $C_{19}As_2Cr_2Fe_3O_{19}$ (953.60) ber.: C, 23.93; Fe, 17.60; Cr, 10.90%. Schmp. 148°C (Zers.).

Die spektroskopischen Daten von IIi sind der Tab. 4 zu entnehmen.

TABELLE 5A

MASSENSPEKTREN DER VERBINDUNGEN IIa-IIc

Ion	Ila		IIb ^a		IIc ^b		
	m/e.	I,	m/e	I _r	m/e	I _r	
<u>M</u> ⁺	834	83	862	1	826	34	
M ⁺ - CO	806	1			798	20	
$M^+ - 2CO$	778	23	806	1	770	5	
M ⁺ - 3CO	750	9	778	1	742	34	
$M^+ - 4CO$	722	1			714	4	
$M^{+} - 5CO$	694	29	722	2	686	15	
M ⁺ - 6CO	666	38	694	2	658	39.	
M ⁺ - 7CO	638	4	666	1	630	100	
$M^{+} - 8CO$	610	49	638	5	602	33	
$M^{+} - 9CO$	582	26	610	4	574	29	
$M^{+} - 10CO$	554	3	582	1	546	43	
<i>M</i> ⁺ –11CO	526	50	554	9	518	48	
$M^{+} - 12CO$	498	23	526	3	490	45	
M ⁺ -13CO	470	72	498	13	462	39	
$M^{+} - 14CO$					434	32	
$M^{+} - 15CO$					406	99	
$Cp_2Mn_2P_2Fe_2^+$	414	8	442 °	4			
Cp ₂ Mn ₂ P ₂ Fe ⁺	358	10	386 °	10			
$Cp_2Mn_2P_2^+$	302	5					
Mn ₂ P ₂ CpFe ⁺	293	8					
Fe ₂ CpMnP ⁺	263	12	277 °	4			
$Mn_2P_2Cp^+$	237	25					
$P_2 MnCp^+$	182	95			182	64	
MnCp ⁺	120	100	134	80	120	87	
Fe ⁺	56	41	56	30	56	10	
Mn ⁺	55	21	55	78	55	39	

^{*a*} (CH₃ - C₅H₄)Mn₂P₂Fe₂⁺ 363(9), (CH₃ - C₅H₄)Mn₂P₂Fe⁺ 307(6), Mn₂P₂Fe₂⁺ 284(4), Mn₂P₂Fe⁺ 228(4), CH₃MnPFe₂⁺ 213(96), Fe₂PMn⁺ 198(6), (CH₃ - C₅H₄)MnP⁺ 165(8), (CH₃ - C₅H₄)⁺ .79(100). ^{*b*} Fe₁P₂MnCp⁺ 350(53), Fe₂P₂MnCp⁺ 294(15), P₂FeMnCp⁺ 238(5), Cp⁺ 66(48). ^{*c*} CH₃C₅H₄ statt Cp. **TABELLE 5B**

Ion	IId ^a		Ile ^b		IIf	
	m/e	<i>I</i> ,	m/e	I _r	m/e	I,
M ⁺	885	10	1130	7	842	33
M^+ – CO	857	10	1102	1	814	17
M ⁺ - 3CO	801	20	1046	4	758	5
M ⁺ - 4CO	773	20			730	3
M ⁺ - 5CO	745	20	999	2	702	7
M ⁺ - 6CO	717	40	962	3	674	35
M ⁺ - 7CO	689	70	934	12	646	80
M ⁺ - 8CO	661	60	906	5	618	31
M ⁺ - 9CO	633	50	878	4	590	33
M ⁺ - 10CO	605	40	850	4	562	24
M ⁺ – 11CO	577	4	822	4	534	18
M ⁺ – 12CO	549	40	794	5	506	22
M ⁺ – 13CO	521	40	766	3	478	16
M ⁺ – 14CO	493	40	738	4	450	39
M ⁺ – 15CO	465	40	710	5	422	14
M ⁺ - 16CO	437	40	682	3	394	9
M ⁺ – 17CO	309	20	654	2	366	65
M ⁺ – 18CO	381	30	626	2	338	100
M ⁺ - 19CO			598	4		
Fe ₃ P ₂ M' ⁺	326	80			282	98
$Fe_2P_2M'^+$	270	30			226	70
P ₂ FeM′ ⁺	214	14			170	71
P ₂ M′ ⁺	158	20			114	40
PM′ ⁺	127	20	87	100	83	28
Fe ⁺	56	80	56	13	56	3
M'+	96	20	184	14	52	3

MASSENSPEKTREN DER VERBINDUNGEN IId-IIf

^a Fe₂MoP⁺ 239(40), FePMo⁺ 183(30), FeP⁺ 87(100). ^b W₂P₂Fe₂⁺ 542(3), W₂P₂Fe⁺ 486(1); W(CO)₆⁺ 352(25), W(CO)₅⁺ 324(6), W(CO)₄⁺ 296(19), W(CO)₃⁺ 268(50), W(CO)₂⁺ 240(20), W(CO)⁺ 212(19).

(b) Darstellung von $[(CO)_5Cr]_2(\mu_4-Sb)_2Fe_3(CO)_9$ (IIj)

Eine Lösung von 220 mg (0.35 mmol) $[(CO)_5Cr]_2Sb-Cl \cdot CH_2Cl_2$ [12] in Toluol wird mit 80 mg (0.37 mmol) Na₂Fe(CO)₄ bei 20°C umgesetzt, wobei man eine Farbänderung von blaugrün nach braunrot beobachtet. Die Lösung wird auf Kieselgur aufgezogen und filtriert. Mit Toluol eluiert man eine braunrote Zone, aus der man nach mehrmaligem Umkristallisieren aus CH_2Cl_2/n -Pentan metallisch glänzende rotbraune nadelförmige Kristalle von IIj erhält.

Ausbeute: 40 mg (20% bez. auf $[(CO)_5Cr]_2Sb-Cl)$. Gef.: C, 21.73; Fe, 15.51. $C_{19}Cr_2Fe_3O_{19}Sb_2$ (1047.3) ber.: C, 21.77; Fe, 16.04%. Schmp. 152°C (Zers.). Röntgenographische Ergebnisse von in dieser Arbeit erwähnten Verbindungen fasst Tabelle 6 zusammen.

(J) Darstellung von $(\mu_2$ -Br)Fe₂(CO)₆ $(\mu_4$ -P)Fe₂(CO)₈ (IIIa)

Eine Suspension von 11 g (30.22 mmol) $Fe_2(CO)_9$ in 200 ml Toluol wird mit 2 g (7.38 mmol) PBr₃ 5.5 h bei 45–50°C gerührt, wobei die Farbe der Reaktionslösung nach rot wechselt. Nach Entfernen des Lösungsmittels bei 10^{-2} mbar wird der Rückstand in n-Pentan aufgenommen und mit 5 g silanisiertem Kieselgel versetzt.

TABELLE 6

WICHTIGSTE ABSTÄNDE (pm) UND WINKEL (Grad) DER VERBINDUNGEN IIa, IIc, IIf, IIh, IIg, IIIb UND V [5]

Verbin-	Abstände		Winkel	
dung	(pm)		(Grad)	
lla	Fe-Fe	260.8(6)-267.1(6)	Fe-Fe-Fe	59.9(2)-61.3(2)
	Mn-P	214.5(9); 214.2(9)	P-Fe-P	94.6(3)-96.6(3)
	Fe-P	224.1(9)-231.7(9)	Fe(1)-P-Mn	136.5(4); 138.6(4)
	Fe-C _{CO}	170(3)-180(3)	Fe(2)-P-Mn	137.8(4); 138.0(4)
	Mn-C _{CO}	174(3)-183(4)	Fe(3)-P-Mn	136.8(4); 139.4(4)
Ic	Fe-Fe	266.8(5)-268.1(5)	Fe-Fe-Fe	58.9(1)-60.8(1)
	Fe-P	221.9(8)-229.7(8)	P-Fe-P	94.1(3)-94.7(3)
	Mn(1)-P(2)	216.5(8)	Fe(1) - P(1) - Mn(1)	138.3(4)
	Fe(4) - P(1)	219.1(8)	Fe(1)-P(2)-Fe(4)	136.5(4)
	Mn-C _{CO}	177(3); 178(3)	Fe(2) - P(1) - Mn(1)	136.9(4)
	Fe–C _{CO}	172(3)-192(4)	Fe(2) - P(2) - Fe(4)	135.6(4)
	Fe(4)-C _{CO}	172(3)-179(3)	Fe(3)-P(1)-Mn(1)	138.8(4)
			Fe(3)-P(2)-Fe(4)	138.3(4)
11	Fe-Fe	260.3(2)-266.2(4)	Fe-Fe-Fe	59.0(1)-61.3(1)
	Fe-P	222.4(3)-227.9(3)	P-Fe-P	94.5(1)-95.3(2)
	Fe(4) - P(2)	216.3(4)	Fe-P(1)-Cr(5)	135.8(2)-140.3(1)
	Cr(5)-P(1)	230.1(4)	Fe-P(2)-Fe(4)	136.6(3)-138.5(2)
	Cr-C _{co}	183(2)-189(2)	., .,	
	Fe-C _{CO}	174(2)-179(2)		
TTh	Èa Fa	260 6(2) 278 1(3)	Ea(1.2) Ea(2.6.1) Ea	(6 7 6)
	$F_{e} = P(1)$	200.0(3) - 276.1(3) 220.6(4) - 226.3(4)	1 ((1,2)-1 ((2,0,1)-1 (58 6(1)-61 1(1)
	$F_{e}(3) - P(1)$	220.0(4) - 220.3(4)	$\mathbf{F}_{\mathbf{P}} = \mathbf{P}(1) - \mathbf{F}_{\mathbf{P}}$	1317(2) - 144A(1)
	Fe(1) = P(2)	243.2(3)	$Fe_{-}P_{-}Mn(1)$	135.7(2) = 144.4(1) 135.2(1) = 139.4(1)
	$F_{e}(2) = P(2)$	229.6(5)	P(1) = Fe(4) = Fe(3)	57 1(1)
	$F_{e}(6) - P(2)$	212 0(4)	P(1) = Fe(6) = Fe(3)	57.9(1)
	$M_{n}(5) = P(2)$	215 5(2)	Fe(1) - Fe(6) - Fe(3)	102 9(1)
	Mn-Coo	172.4(9): 173(1)	Fe(2) - Fe(6) - Fe(3)	104.4(1)
	Fe-C _{CO}	170.2(9)-181(1)		· · · · · · · · · · · · · · · · · · ·
IIø	Fe-Fe	260 0(2)-262 5(2)	Fe-Fe-Fe	59 6(1)-60 3(1)
	$M_{n}(1) - P(1)$	216 6(3)	$M_{n}(1) - P(1) - Fe$	1362(1) - 1380(1)
	P(1)-Fe	220.4(3) - 223.9(2)	P(5) - Fe(4) - P(1)	95.1(1)
	P(5)-Fe	221.9(3) - 224.7(3)	P(1) - Fe(4) - P(4)	167.2(1)
	P(2) = Fe(2)	217 1(4)	P(2) = Fe(2) = Fe(3)	133.8(1)
	P(3) - Fe(3)	217.6(3)	P(5) - Fe(2) - P(2)	85.6(1)
	P(4) - Fe(4)	217 2(3)	P(5) = Fe(3) = P(1)	95.0(1)
	Fe-Cas	172(1) - 178(1)	P(5) = Fe(4) = P(4)	82.6(1)
	Mn-Cao	175(1): 176(1)	P(5) - Fe(2) - P(1)	93.9(1)
			P(5) - Fe(3) - P(3)	86.5(1)
			P(3) - Fe(3) - Fe(4)	138.1(1)
			P(4) - Fe(4) - Fe(3)	115.9(1)
шь	Fe-P	223 6(5)-224 2(3)	Fe(1)_P_Fe(2)	69.5(1)
	W-P	261.4(4)	Fe(1) - P - Fe(3)	130.7(2)
	Fe(1)-Fe(2)	255.3(4)	Fe(1)-P-W	132.3(1)
	Fe(3) - W	295.7(2)	Fe(3)-P-W	74.6(1)
	Fe(1)-Br	241.9(3)	Fe(2)-P-Fe(3)	131.8(1)
	Fe(2)-Br	243.8(2)	Fe(2)-P-W	128.8(2)
	Fe-Cco	175(1)-186(2)	Fe(1)-Br-Fe(2)	69.5(1)
	W-Cco	198(2)-207(2)	P-Fe(1)-Br	81.0(1)
			P-Fe(2)-Br	80.5(1)

(fortgesetzt)

TΑ	BEL	.LE	6 ((For	setzun	g)
----	-----	-----	-----	------	--------	----

Verbin-	Abstände		Winkel	
dung	(pm)		(Grad)	
v	P(1)-P(2)	208.7(6)	Cr(1) - P(1) - P(2)	143.0(3)
	P(1) - Cr(1)	230.5(5)	Cr(1) - P(1) - Fe(1)	138.5(2)
	P(2) - Cr(2)	230.8(6)	Cr(1) - P(1) - Fe(2)	143.4(2)
	P(1) - Fe(1)	229.4(5)	Cr(2) - P(2) - P(1)	137.3(2)
	P(1) - Fe(2)	228.2(4)	Cr(2) - P(2) - Fe(1)	146.5(2)
	Fe(1)-Fe(2)	260.5(3)	Cr(2) - P(2) - Fe(2)	139.1(2)
	P(2) - Fe(1,2)	228.0(5); 228.3(5)		
	Fe-C _{CO}	178(2)-184(2)		
	Cr-C _{CO}	186(2)-195(2)		
	$Fe(1) - C_{CO}(7)$	200(2)		
	$Fe(2)-C_{CO}(7)$	204(2)		

Am Hochvak. wird das Lösungsmittel bis zur Rieselfähigkeit des Kieselgels entfernt. Das mit Substanz beladene Kieselgel wird bei -20° C auf eine Chromatographiesäule $(20 \times 2.5 \text{ cm}, \text{ n-Pentan})$ aufgebracht. Mit n-Pentan/Toluol (1/1) - Toluol eluiert man eine rote Zone, aus der man nach Abziehen des Lösungsmittels und Umkristallisation aus n-Pentan/Toluol dunkelrote Kristalle von IIIa erhält.

Ausbeute: 1.5 g (28% bez. auf PBr₃). Gef.: C, 23.37; Fe, 31.35; P, 4.81. $C_{14}BrFe_4O_{14}P$ (726.42) ber.: C, 23.15; Fe, 30.75; P, 4.26%. Schmp. 128°C (Zers.). IR (ν (CO), n-Pentan): 2114w, 2069s, 2064s, 2047vs, 2036w, 2031m, 2014vw, 2004m, 1993vw, 1979m. ³¹P-NMR (Toluol, 273 K): 439 (S, 1P). MS [m/e(rel. Int.)]: M^+ 725(3), M^+ -CO 697(16), M^+ -2CO 669(8), M^+ -3CO 641(5), M^+ -4CO 613(12), M^+ -5CO 585(11), M^+ -6CO 557(17), M^+ -7CO 529(52), M^+ -8CO 501 (56), M^+ -9CO 473(25), M^+ -10CO 445(34), M^+ -11CO 417(42), M^+ -12CO 389(30), M^+ -13CO 361(38), M^+ -14CO 333(100), Fe₃PBr⁺ 278(73), Fe₂PBr⁺ 224(32), Fe₃P⁺ 199(18), FePBr⁺ 166(13), Fe₂P⁺ 143(49), Fe⁺ 56(65).

Dank

Wir danken der Deutschen Forschungsgemeinschaft, Bonn Bad-Godesberg, und dem Fonds der Chemischen Industrie, Frankfurt/M. für die Unterstützung dieser Arbeit. Den Herren E. Pilz und Dipl. Chem K. Knoll sind wir für die Aufnahme von Massenspektren, den Damen M. Glas, M. Bader und R. Naserke für die Durchführung von Elementaranalysen dankbar.

Literatur

- (a) H. Lang, L. Zsolnai und G. Huttner, Angew. Chem., 95 (1983) 1016; Angew. Chem. Int. Ed. Engl., 22 (1983) 976; Angew. Chem. Suppl., (1983) 1451; (b) H. Lang, L. Zsolnai und G. Huttner, Angew. Chem., 95 (1983) 1017; Angew. Chem. Int. Ed. Engl., 22 (1983) 976; Angew. Chem. Suppl., (1983) 1463.
- 2 (a) T. Zimler, A. Vizi-Orosz und L. Markó, Trans. Met. Chem., 2 (1977) 97; (b) L.T.I. Delbaere, L.J. Kruczynski und D.W. McBride, J. Chem. Soc., Dalton Trans., (1973) 307.
- 3 G. Huttner, G. Mohr, B. Pritzlaff, J. von Seyerl und L. Zsolnai, Chem. Ber., 115 (1982) 2044.
- 4 (a) H.A. Skinner und J.A. Connor, Pure Appl. Chem., 57 (1985) 79; (b) G. Al-Takhin, J.A. Connor, G. Pilcher und H.A. Skinner, J. Organomet. Chem., 265 (1984) 263.
- 5 Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum

Energie Physik Mathematik D-7514 Eggenstein-Leopoldshafen unter Angabe der Hinterlegungsnummer CSD51628, der Autoren und des Zeitschriftenzitats angefordert werden.

Messbedingungen: Syntex-Nicolet P3-Diffraktometer, Mo- K_{α} , λ 71.069 pm, Graphitmonochromator, ω -scan, empirische Absorptionskorrektur. Strukturlösung: SHELXTL (G.M. Scheldrick, Göttingen, Revision 1982).

Verbindung IIa: $C_{23}H_{10}Fe_3Mn_2O_{13}P_2$, Molmasse 833.70; Raumgruppe $P2_1/c$; a 2134(5), b 837.6(6), c 1587(2) pm; β 94.7(1)°; V 2827×10⁶ pm³; Z = 4; d_{ber} . 1.96 g cm⁻³; μ -Mo- K_{α} 26.3 cm⁻¹; T 293 K; 1282 unabhängige Reflexe ($I \ge 2\sigma$); $R_1 = 0.101$, $R_2 = 0.112$.

Verbindung IIc: $C_{20}H_5Fe_4MnO_{15}P_2$, Molmasse 825.33; Raumgruppe $P2_1/c$; a 1732(1), b 894(1), c 1834(2) pm; β 95.03(7)°; V 2799×10⁶ pm³; Z = 4; d_{ber} . 1.94 g cm⁻³; μ -Mo- K_{α} 26.9 cm⁻¹; T 293 K; 1604 unabhängige Reflexe ($I \ge 3\sigma$); $R_1 = 0.087$, $R_2 = 0.096$.

Verbindung IIf: C_{18} CrFe₄ O_{18} P₂, Molmasse 841.52; Raumgruppe $P2_1/c$; a 894.5(4), b 2256(2), c 1908(1) pm; β 133.59(3)°; V 2789×10⁶ pm³; Z = 4; d_{ber} . 2.0 g cm⁻³; μ -Mo- K_{α} 26.7 cm⁻¹; T 225 K; 2302 unabhängige Reflexe ($I \ge 2\sigma$); $R_1 = 0.060$, $R_2 = 0.065$.

Verbindung IIh: $C_{23}H_5Fe_5MnO_{18}P_2$, Molmasse 965.41; Raumgruppe $P2_1/c$; *a* 1064(1), *b* 1783(1), *c* 2217(3) pm; β 132.30(8)°; V 3107×10⁶ pm³; Z = 4; d_{ber} , 2.06 g cm⁻³; μ -Mo- K_{α} 29.2 cm⁻¹; T 248 K; 2912 unabhängige Reflexe ($I \ge 2\sigma$); $R_1 = 0.053$, $R_2 = 0.052$.

Verbindung IIg: $C_{40}H_{68}Fe_3MnO_{17}P_5$, Molmasse 1198.33; Raumgruppe $P2_1/c$; a 1724.8(9), b 1817.5(7), c 1909.4(8) pm; β 95.67(4)°; V 5956×10⁶ pm³; Z = 4; d_{ber} 1.44 g cm⁻³; μ -Mo- K_{α} 11.5 cm⁻¹; T 298 K; 6000 unabhängige Reflexe ($I \ge 2\sigma$); $R_1 = 0.075$, $R_2 = 0.081$.

Verbindung IIIb: C₁₅BrFe₃O₁₅PW, Molmasse 882.43; Raumgruppe P_{2_1}/c ; *a* 912.5(5), *b* 2832(1), *c* 1304.7(6) pm; β 135.03(2)°; *V* 2382×10⁶ pm³; *Z* = 4; *d*_{ber.} 2.46 g cm⁻³; μ -Mo- K_{α} 88.3 cm⁻¹; *T* 298 K; 2475 unabhängige Reflexe ($I \ge 2\sigma$); $R_1 = 0.035$, $R_2 = 0.042$.

Verbindung V: $C_{17}Cr_2Fe_2O_{17}P_2$, Molmasse 753.81; Raumgruppe P_{2_1}/c ; a 949.0(5), b 1682(1), c 1825(1) pm; β 103.42(4)°, V 2834×10⁶ pm³; Z = 4; d_{ber} 1.87 g cm⁻³; μ -Mo- K_{α} 20.0 cm⁻¹; T 233 K; 2566 unabhängige Reflexe ($I \ge 2\sigma$); $R_1 = 0.082$, $R_2 = 0.11$.

- 6 G. Huttner, J. Borm und L. Zsolnai, J. Organomet. Chem., 263 (1984) C33.
- 7 (a) H. Lang, G. Mohr, O. Scheidsteger und G. Huttner, Chem. Ber., 118 (1985) 574; (b) H. Lang, O. Orama und G. Huttner, J. Organomet. Chem., 291 (1985) 293; (c) J. Borm, G. Huttner, H. Berke und L. Zsolnai, J. Organomet. Chem., im Druck.
- 8 (a) A. Vizi-Orosz, J. Organomet. Chem., 111 (1976) 61; (b) A. Vizi-Orosz, V. Galamb, G. Pályi und L. Markó, J. Organomet. Chem., 216 (1981) 105.
- 9 S. Midollini, A. Orlandini und L. Sacconi, Angew. Chem., 91 (1979) 93; Angew. Chem. Int. Ed. Engl., 18 (1979) 81.
- 10 H. Lang, G. Huttner, B. Sigwarth, I. Jibril, L. Zsolnai und O. Orama, J. Organomet. Chem., 304 (1986) 137.
- 11 (a) J. von Seyerl, U. Moering, A. Wagner, A. Frank und G. Huttner, Angew. Chem., 90 (1978) 912; Angew. Chem. Int. Ed. Engl., 17 (1978) 844; (b) J. von Seyerl, B. Sigwarth, H.G. Schmid, G. Mohr, A. Frank, M. Marsili und G. Huttner, Chem. Ber., 114 (1981) 1392.
- 12 U. Weber, L. Zsolnai und G. Huttner, J. Organomet. Chem., 260 (1984) 281 und dort zit. Lit.
- 13 M. Elian und R. Hoffmann, Inorg. Chem., 14 (1975) 1058.
- 14 U. Weber, G. Huttner, O. Scheidsteger und L. Zsolnai, J. Organomet. Chem, 289 (1985) 357.
- 15 (a) W. Strohmeier, Angew. Chem., 76 (1964) 873; Angew. Chem. Int. Ed. Engl., 3 (1964) 730; (b) E.O. Fischer und M. Herberhold, Experientia Suppl., 9 (1964) 259.
- 16 (a) W. Strohmeier und J.F. Müller, Chem. Ber., 100 (1967) 2812; (b) J. Müller und K. Fenderl, J. Organomet. Chem., 19 (1969) 123.
- 17 (a) H. Meinert, H. Vogt, B. Pahnke und G. Schulenburg, Z. Chem., 20 (1980) 110; (b) R. Poilbanc und M. Bigorgne, Bull. Soc. Chim. France, (1962) 1301; (c) D.J. Darensbourg und Th.C. Brown, Inorg. Chem., 7 (1968) 960.
- 18 A. Hinke und W. Kuchen, Z. Naturforsch. B, 37 (1982) 1543.
- 19 E.O. Fischer und L. Knauss, Chem. Ber., 102 (1969) 223.
- 20 W. Strohmeier und F.J. Müller, Chem. Ber., 102 (1969) 3608.
- 21 E. Lindner, H. Behrens und S. Birkle, J. Organomet. Chem., 15 (1968) 165.
- 22 E. Moser, E.O. Fischer, W. Bathelt, W. Gretner, L. Knauss und E. Louis, J. Organomet. Chem., 19 (1969) 377 und dort zit. Lit.
- 23 H. Lang, L. Zsolnai und G. Huttner, Z. Naturforsch. B, 40 (1985) 500.